Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Biobehav Rev ; 158: 105450, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37925091

ABSTRACT

Over the last decades, theoretical perspectives in the interdisciplinary field of the affective sciences have proliferated rather than converged due to differing assumptions about what human affective phenomena are and how they work. These metaphysical and mechanistic assumptions, shaped by academic context and values, have dictated affective constructs and operationalizations. However, an assumption about the purpose of affective phenomena can guide us to a common set of metaphysical and mechanistic assumptions. In this capstone paper, we home in on a nested teleological principle for human affective phenomena in order to synthesize metaphysical and mechanistic assumptions. Under this framework, human affective phenomena can collectively be considered algorithms that either adjust based on the human comfort zone (affective concerns) or monitor those adaptive processes (affective features). This teleologically-grounded framework offers a principled agenda and launchpad for both organizing existing perspectives and generating new ones. Ultimately, we hope the Human Affectome brings us a step closer to not only an integrated understanding of human affective phenomena, but an integrated field for affective research.


Subject(s)
Arousal , Emotions , Humans
2.
bioRxiv ; 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37546946

ABSTRACT

Our brain must manage multiple goals that differ in their temporal proximity. Some goals require immediate attention, while others have already been accomplished, or will be relevant later in time. Here, we examined how the hippocampus represents the temporal distance to different goals using a novel space-themed paradigm during 7T functional MRI (n=31). The hippocampus has an established role in mental time travel and a system in place to stratify information along its longitudinal axis on the basis of representational granularity. Previous work has documented a functional transformation from fine-grained, detail rich representations in the posterior hippocampus to coarse, gist-like representations in the anterior hippocampus. We tested whether the hippocampus uses this long axis system to dissociate goals based upon their temporal distance from the present. We hypothesized that the hippocampus would distinguish goals relevant for ones' current needs from those that are removed in time along the long axis, with temporally removed past and future goals eliciting increasingly anterior activation. We sent participants on a mission to Mars where they had to track goals that differed in when they needed to be accomplished. We observed a long-axis dissociation, where temporally removed past and future goals activated the left anterior hippocampus and current goals activated the left posterior hippocampus. Altogether, this study demonstrates that the timestamp attached to a goal is a key driver in where the goal is represented in the hippocampus. This work extends the scope of the hippocampus' long axis system to the goal-mapping domain.

3.
Sci Rep ; 10(1): 12913, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32737357

ABSTRACT

Delay discounting describes the phenomenon whereby the subjective value of a reward declines as the time until its receipt increases. Individuals differ in the subjective value that they assign to future rewards, yet, the components feeding into this appraisal of value remain unclear. We examined whether temporal psychological distance, i.e. the closeness one feels to the past and future, is one such component. English speakers in the USA and Mandarin speakers in China completed a delay discounting task and organized past and future world events on a canvas according to their representation of the event's temporal position relative to themselves. Previous work has identified linguistic and cultural differences in time conception between these populations, thus, we hypothesized that this sample would display the variability necessary to probe whether temporal psychological distance plays a role in reward valuation. We found that English speakers employed horizontal, linear representations of world events, while Mandarin speakers used more two-dimensional, circular representations. Across cultures, individuals who represented the future as more distant discounted future rewards more strongly. Distance representations of past events, however, were associated with discounting behaviors selectively in Mandarin speakers. This suggests that temporal psychological distance plays a fundamental role in farsighted decision-making.


Subject(s)
Choice Behavior/physiology , Culture , Delay Discounting/physiology , Language , Adolescent , Adult , China , Decision Making , Female , Humans , Male , United States
4.
Neuropsychopharmacology ; 43(9): 1934-1942, 2018 08.
Article in English | MEDLINE | ID: mdl-29875450

ABSTRACT

Elucidating mechanisms by which physical exercise promotes resilience, the brain's ability to cope with prolonged stress exposure while maintaining normal psychological functioning, is a major research challenge given the high prevalence of stress-related mental disorders, including major depressive disorder. Chronic voluntary wheel running (VWR), a rodent model that mimics aspects of human physical exercise, induces the transcription factor ΔFosB in the nucleus accumbens (NAc), a key reward-related brain area. ΔFosB expression in NAc modulates stress susceptibility. Here, we explored whether VWR induction of NAc ΔFosB promotes resilience to chronic social defeat stress (CSDS). Male young-adult C57BL/6J mice were single housed for up to 21 d with or without running wheels and then subjected to 10 d of CSDS. Stress-exposed sedentary mice developed a depressive-like state, characterized by anhedonia and social avoidance, whereas stress-exposed mice that had been wheel running showed resilience. Functional inhibition of NAc ΔFosB during VWR, by viral-mediated overexpression of a transcriptionally inactive JunD mutant, reinstated susceptibility to CSDS. Within the NAc, VWR induction of ΔFosB was CREB-dependent, associated with altered dendritic morphology, and medium spiny neuron (MSN) subtype specific in the NAc core and shell subregions. Finally, when mice performed VWR following the onset of CSDS-induced social avoidance, VWR normalized such behavior. These data indicate that VWR promoted resilience to CSDS, and suggest that sustained induction of ΔFosB in the NAc underlies, at least in part, the stress resilience mediated by VWR. These findings provide a potential framework for the development of treatments for stress-associated mental illnesses based on physical exercise.


Subject(s)
Nucleus Accumbens/metabolism , Resilience, Psychological , Running/physiology , Running/psychology , Stress, Psychological/metabolism , Anhedonia/physiology , Animals , Dendritic Spines/metabolism , Dendritic Spines/pathology , Depression/metabolism , Depression/pathology , Dominance-Subordination , Male , Mice, Inbred C57BL , Nucleus Accumbens/pathology , Sedentary Behavior , Stress, Psychological/pathology , Transcription, Genetic , Volition
5.
Nat Commun ; 9(1): 653, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29422549

ABSTRACT

The original version of this Article contained an error in the spelling of the author Scott Edwards, which was incorrectly given as Scott Edward. This has now been corrected in both the PDF and HTML versions of the Article.

6.
Nat Commun ; 8(1): 2220, 2017 12 20.
Article in English | MEDLINE | ID: mdl-29263389

ABSTRACT

Alcohol-use disorder (AUD) is the most prevalent substance-use disorder worldwide. There is substantial individual variability in alcohol drinking behaviors in the population, the neural circuit mechanisms of which remain elusive. Utilizing in vivo electrophysiological techniques, we find that low alcohol drinking (LAD) mice have dramatically higher ventral tegmental area (VTA) dopamine neuron firing and burst activity. Unexpectedly, VTA dopamine neuron activity in high alcohol drinking (HAD) mice does not differ from alcohol naive mice. Optogenetically enhancing VTA dopamine neuron burst activity in HAD mice decreases alcohol drinking behaviors. Circuit-specific recordings reveal that spontaneous activity of nucleus accumbens-projecting VTA (VTA-NAc) neurons is selectively higher in LAD mice. Specifically activating this projection is sufficient to reduce alcohol consumption in HAD mice. Furthermore, we uncover ionic and cellular mechanisms that suggest unique neuroadaptations between the alcohol drinking groups. Together, these data identify a neural circuit responsible for individual alcohol drinking behaviors.


Subject(s)
Alcohol Drinking/physiopathology , Behavior, Animal/physiology , Dopaminergic Neurons/metabolism , Nucleus Accumbens/physiopathology , Ventral Tegmental Area/physiopathology , Alcohol Drinking/metabolism , Animals , Mesencephalon/metabolism , Mesencephalon/physiopathology , Mice , Neural Pathways/physiology , Nucleus Accumbens/metabolism , Optogenetics , Ventral Tegmental Area/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...